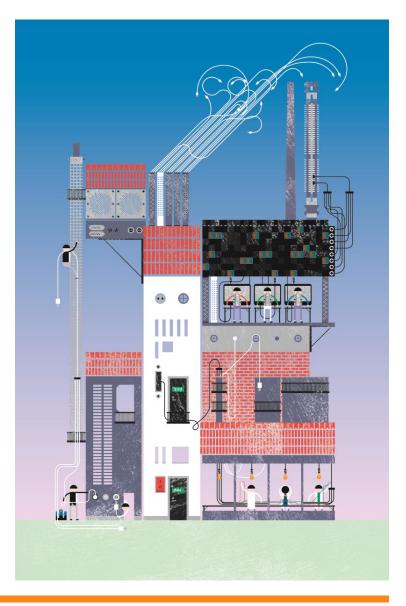



# Industrial Internet, an IoT case for 5G

Martti Mäntylä Aalto University

## Martti Mäntylä – Back in business!

- Professor of Information Technology (Enterprise Systems), TKK & Aalto University 1987-
- Chief Strategy Officer, EIT ICT Labs 2009-2013
- Director, Helsinki Institute for Information Technology 1999-2008
- Since 2014, catalysing Aalto's activities in Industrial Internet





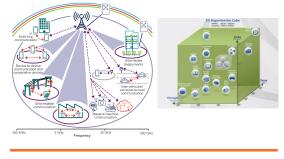

# Aalto Industrial Internet Campus

Innovation and Encounters backed up by Research and Education

http://aiic.aalto.fi

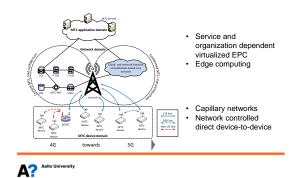





#### **5G, Please Meet Industrial Internet**



### **5G as an Industrial Internet Platform?**

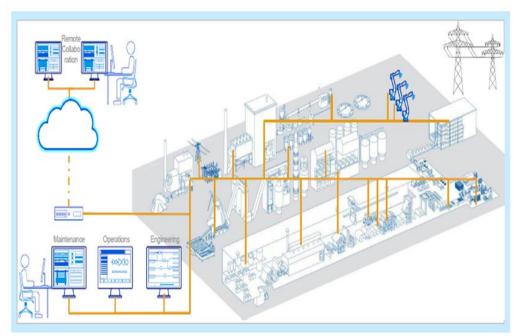

- Today, 4G/LTE architecture manages 2 billion mobile devices in a multiple actor environment, including sharing of business data across operators
- Can 5G provide a management architecture for 20 billion smart devices, including setting up "overlays" for industrial firms for data management and "joint clouds" for controlled data sharing across companies?
- If "yes", what should we do about it?

#### 5G: Support for heterogeneous services





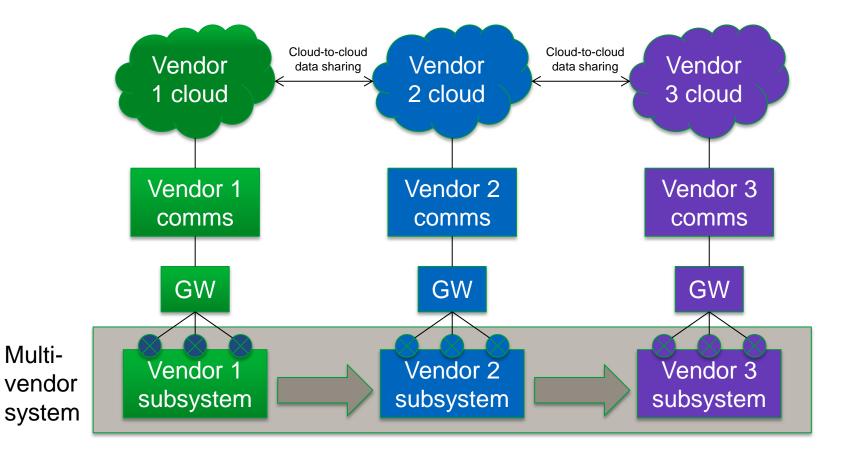
#### 5G: Machine type communications





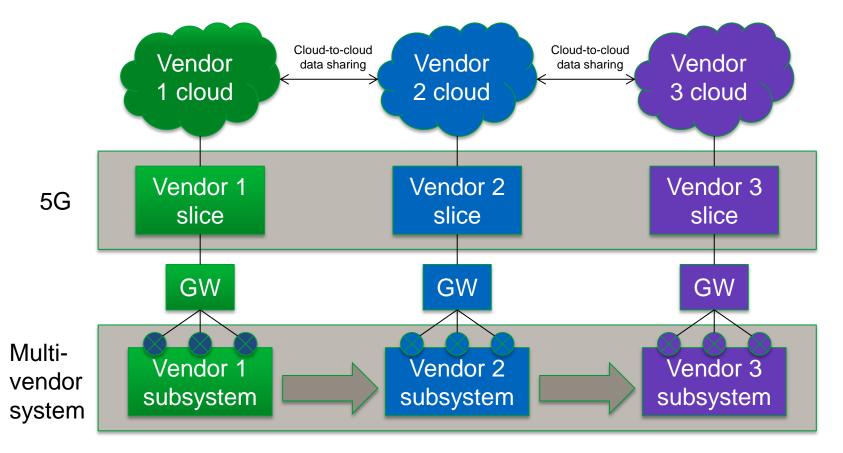

#### **Business Case: Forest Industry**

Share, analyze and utilize cross-enterprise data from a production line for win-win-win solutions


- Shared benefits across production life-cycle in
  - Engineering
  - Operations
  - Maintenance
- Key characteristics of the solution
  - 1. Real-time data
  - 2. Mobile & remote operations
  - 3. Predictive actions
  - 4. Increased automation
- The scope covers all major functional units of the selected production line

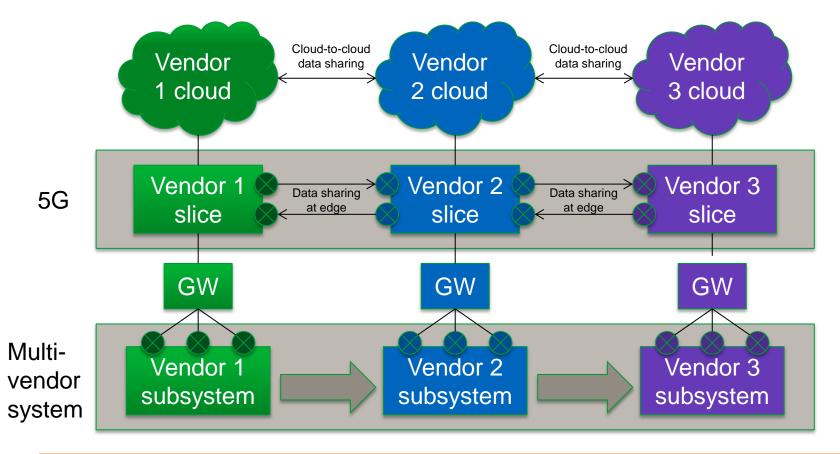


Open the sensor data of machines from a selected production line to boost operational innovations for all stake holders.



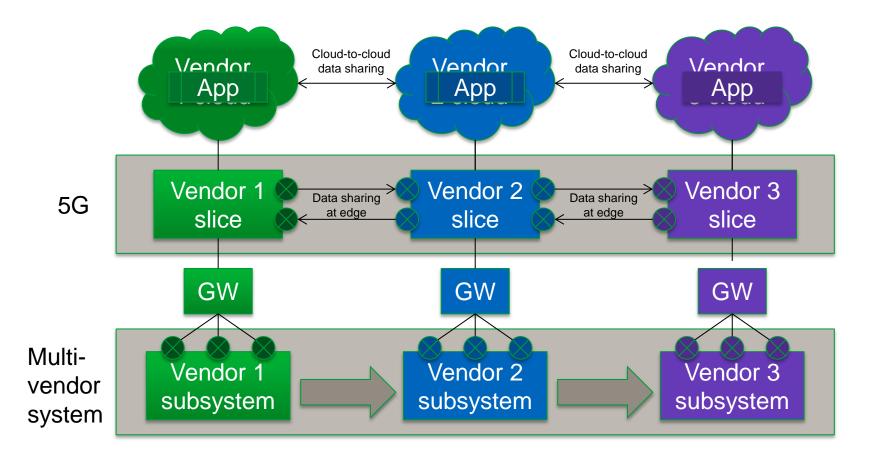

#### **Present: Vertical silos**






# Future 1: Shared communications platform






# Future 2: Shared communications platform with data sharing at edge





### Future 3: Client applications at edge

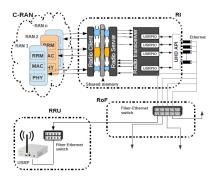




## **5G@II Project**



## 5G@ll project

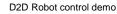

- Create a management system embedded in the 5G architecture that will support
  - secure management of the smart devices
  - scalable and secure data collection and storage on the basis of 5G network slicing
  - policy-based digital contracting, digital service creation and management
  - trustworthy data sharing using models rather than data itself.
- Pilot the system by combining the AIIC platform <u>http://aiic.aalto.fi/en/</u> and TAKE-5 experimental 5G network (<u>http://take-5g.org/</u>) and running concrete experiments based on industrially relevant use cases.



#### **TAKE-5**

#### 5G research platform @Aalto

- Aalto TD-LTE testbed
  - Implementation of TD-LTE tesbed (Rel. 8) on general purpose processors and non-real-time operation system
    - Over 30 000 lines of C++ code
    - PHY and limited set of RRC and MAC functions
  - Cloud-RAN setup
    - Base station can run on virtual server
  - Flexible spectrum use
    - Can interact with Farispectrum geo-location data base
    - TVWS operation
  - DAS implementation
    - Antenna port selection
    - Open loop transmit diversity
  - D2D implementation
    - Network controlled D2D
    - Reliable D2D links
    - · Underlay with IC
    - Mode selection
  - MTC MAC implementation
    - Compressive sensing based MAC with IC

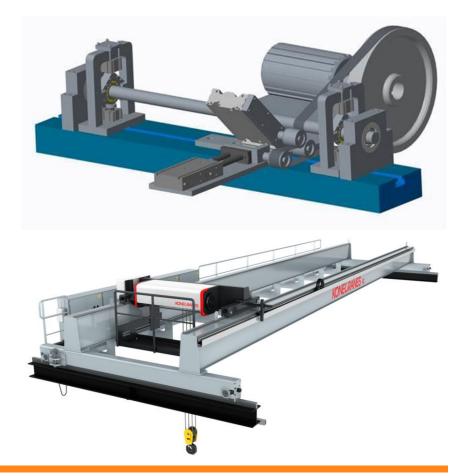





eNodeB and RRU

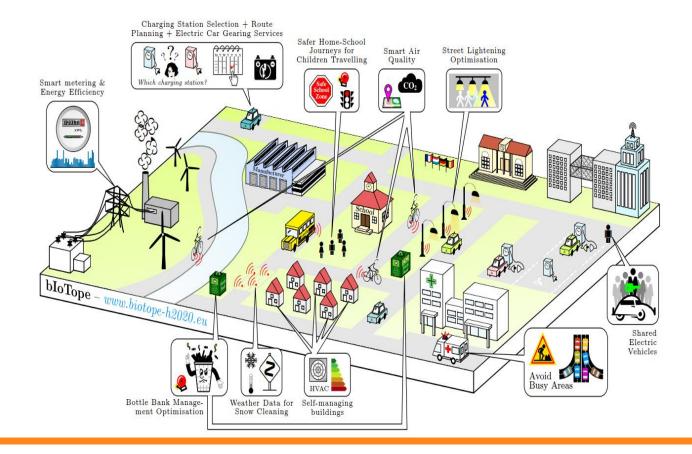
#### Cloud RAN architecture











### **AIIC experimental platforms**

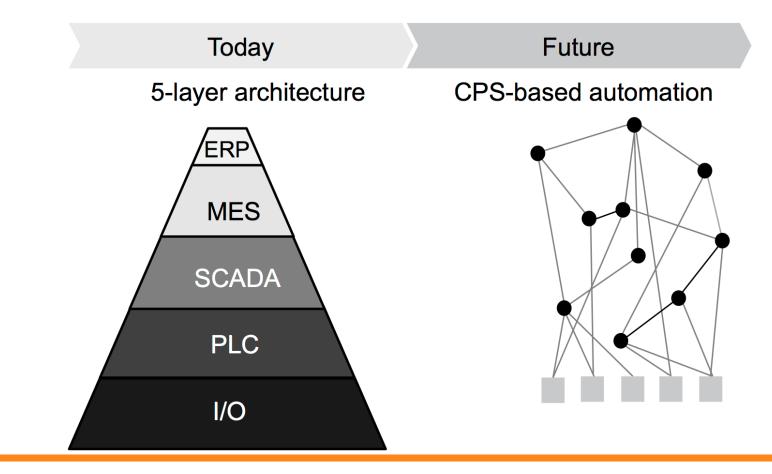
- ABB: IoT instrumentation for a research apparatus for studying magnetic bearings
- Konecranes: Smart crane with extensive PLM models and IoT interfaces
- ABB et al.: Process control lab with several loT-enabled unit processes
- ACRE: Digital campus





### **Digital campus: bloTope project**






#### Nomenclature

- "Factory": shorthand for various kinds of production sites or pieces of physical infrastructure with a variety of equipment organised and managed as a whole
- "Equipment": individual pieces of production equipment inside a factory, presently typically organised and managed with a hierarchical control structure (ERP, MES, SCADA, PLC)
  - With Industrie 4.0, the fixed hierarchical control may be replaced by a more flexible network of "components"
  - This opens the door for more flexible and agile control architecture ("control by cloud, and without ownership")



# From 5-layer architecture to autonomous cyber-physical systems





#### Data

- Production management data: Data on the material flow (inputs and outputs) through the factory and its equipment
- Control data: Used to control the direct operations of a factory and its equipment
- Diagnostic data: Used to monitor the performance of the operations of the factory and its equipment
- Engineering data: Lifecycle engineering data on the factory and its equipment (incl. design data, configuration data, maintenance histories, data on embedded software where relevant)
- Orthogonal categories of the above:
  - Personal data: Data related to persons operating the factory
  - Company data: Data related to the identity of the stakeholder(s)



## **Stakeholders / domains of governance**

- Factory "owner"
- Factory operator (if distinct from owner)
- Shop floor operator
- Equipment provider
- Supplier(s) and customers
- Service providers
  - Incl. maintenance, engineering services
- Regulators, certification authorities
- Financial institutions
- Public domain



#### **Use cases**

- Factory control
   Local / remote
- Factory monitoring
- Fleet management
- Digital twin
- Intelligent mobility



#### **Factory control**

- Enable control of factory equipment for industrial process optimization
- Local: E.g., private 5G network inside factory site
- Remote: E.g., network slice for data transmission between different production sites and other parties
- Stakeholders:
  - Factory owner: needs full access
  - Equipment providers: must grant access to the control features



### **Factory control**

- 5G issues
  - Spectrum management
  - Latency (Especially to enable "remote control" by leveraging cloud-based approach)
    - On-demand provisioning of some "control" features at the edge of the network
  - Dynamic network and service chaining
  - Robustness and availability
  - Cyber security
  - Lifecycle management
    - New equipment, new control software versions, ...
    - Esp. scenarios where equipment from many vendors needs to be managed and controlled in a single system



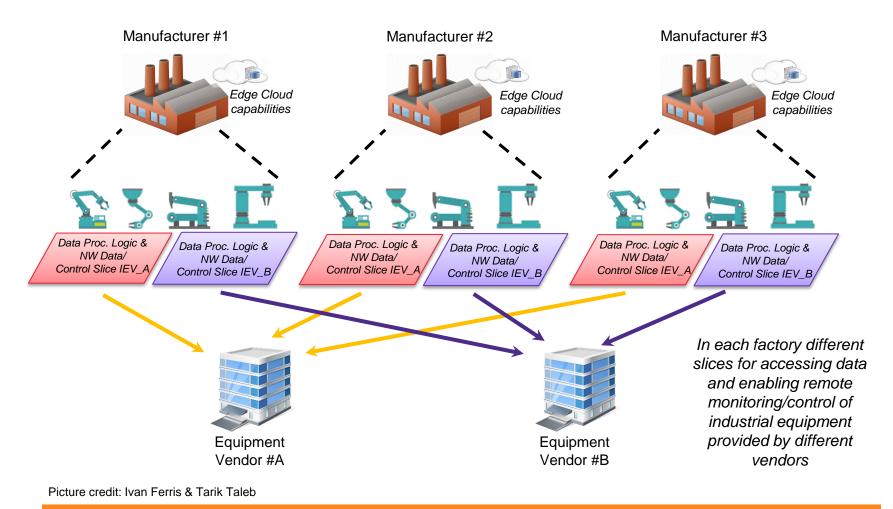
## **Factory monitoring**

- Provide data for monitoring the performance of the factory and its equipment
  - (Some) control data, diagnostic data
  - Collect historical performance data for analysis and assessment
- Stakeholders:
  - Factory owner: full view
  - Equipment provider: partial view related to the specific piece of equipment (plus potentially relevant other data related to the use context) -> fleet management
  - Other stakeholders: e.g., regulative body, financial institution, factory supplier, factory customer, factory service provider



## **Factory monitoring**

- 5G issues
  - How to provide several parallel views to the underlying factory data flows corresponding to the needs of various stakeholders and respecting the confidentiality requirements of each?



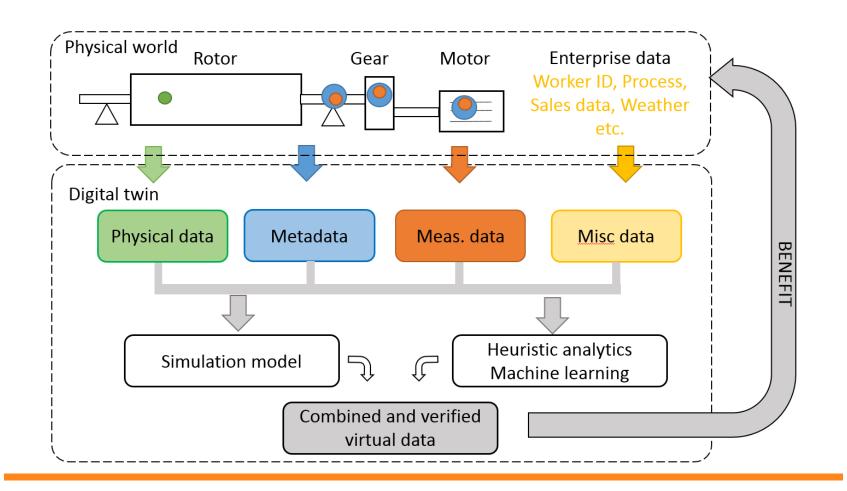

#### **Fleet management**

- Remote management of equipment by its provider
  - Diagnostics / predictive maintenance: Collect diagnostic data for fault prediction and assessment, guide maintenance operations
  - Life-cycle engineering: Collect diagnostic data to study how the operations can be improved by better design, optimising the control, improving the product configuration via some update, etc.), design and deploy updates
- Stakeholders:
  - Equipment providers: access to relevant data from installed base
  - Customers: need to grant access to relevant data
- 5G issues
  - How to provide access to all installed equipment on the field while respecting the confidentiality requirements of the customers?



### **Remote monitoring / fleet management**






## **Digital twin**

- Build and maintain a comprehensive data repository representing a specific product instance across its whole lifecycle (design, manufacturing, installation, use, demolishing/reuse), e.g.
  - Rich design/engineering data such as simulation models and design rationales
  - Maintenance history
  - Time-series data of embedded sensor readings



## **Digital twin**





#### **Intelligent mobility**

Aalto.fi / Home / News & Events / News

#### **News & Events**

| News & Events > News        |   |                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                             |   | Henry Ford Trust and Aalto University to                                                                                                                                                                                                                                                                                                                                                    |  |
|                             |   | cooperate on smart traffic research                                                                                                                                                                                                                                                                                                                                                         |  |
| > Events                    |   | 🔹 LISTEN                                                                                                                                                                                                                                                                                                                                                                                    |  |
| > Aalto University Magazine | + | 02.06.2017                                                                                                                                                                                                                                                                                                                                                                                  |  |
| > Finland 100               |   | A networked traffic system offers possibilities to streamline traffic safety,<br>mobility services, and traffic, especially in urban environments.                                                                                                                                                                                                                                          |  |
| News archive                | + |                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                             |   | Henry Ford Trust will support Aalto University's research project on smart traffic with a four-year funding.<br>The extent of the whole project is about 700 000 euros, of which the trust will now fund the first year and<br>the purchase of a research car. When realised in its entirety, the trust's funding enables three four-year<br>doctoral theses on the field of smart traffic. |  |
|                             |   | The trust also annually awards grants for several Master's and other theses.                                                                                                                                                                                                                                                                                                                |  |
|                             |   | "Aalto University's interdisciplinarity is a strength in researching future technologies and their applications.<br>The study of smart traffic and mobility is closely tied to digitalisation, new energy solutions, and built<br>environment, which are our strengths", says Dean <b>Gary Marquis</b> .                                                                                    |  |
|                             |   | "Committed research, building networks, international cooperation, and systematic utilisation of<br>information multiply the effectiveness of the investment", states <b>Hannu Pärssinen</b> , the chair of the board<br>of Henry Ford Trust.                                                                                                                                               |  |
|                             |   | The professors supervising destand research. Keyi Temmi. Miles Midenaula and Claudia Denseli                                                                                                                                                                                                                                                                                                |  |



# Use cases vs. AllC experimental platforms

|                                               | Smart crane                                                                                                                 | Process plant                                                       | Building mgt                                                        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| Factory<br>control                            | M2M scenarios with strict latency requirements                                                                              | Remote control<br>scenarios with strict<br>latency<br>requirements  | System-level<br>control of devices<br>from multiple<br>vendors      |
|                                               |                                                                                                                             |                                                                     | Equipment life-<br>cycle management                                 |
| Factory<br>monitoring<br>/fleet<br>management | Managed access to<br>relevant data to the<br>equipment provider<br>Partial access to relevant<br>data to other stakeholders | Managed access to<br>relevant data to the<br>equipment<br>providers | Managed access to<br>relevant data to the<br>equipment<br>providers |
| Digital twin                                  | Data integration scenarios including sensor data                                                                            | On-line simulation<br>& control scenarios                           | On/off-line<br>simulation and<br>control scenarios                  |





Comments and questions welcome!

