

Celtic-Plus project SASER Safe and Secure European Routing

Andreas Leven, Alcatel-Lucent, Germany 24. 06. 2014

SASER - General Project Description

Project Type	 Celtic+ Project, funded by national funding agencies e.g. BMBF, DGCIS, Tekes Focus on security, safety features for core networks
Project Duration	
	01.07.2012 – 31.08.2015 (38 months)
	Different starting points in different countries or clusters)
Project Volume	
	• ~ 80 Mio. €, ~ 500 PY
	 Funding by: BMBF / Germany, DGCIS/France, Tekes / Finland
Project Partners	
	 64 partners (industry, SME, universities and research institutes)
	 5 countries (Germany, France, UK, Denmark and Finland)
	 Clustered in 3 sub-projects + 3 cross activities

······ Alcatel·Lucent 🥢

SASER – Key Activities

Key topic 1: Security, safety, and reliability aspects

- Network security by protection against external and internal attacks (e.g. intrusion detection, backdoor detection)
- Safe and reliable transmission by applying innovative coding (packet coding schemes, error correction coding schemes)
- Safe and reliable networking (multi-layer protection, restoration and disaster recovery)

Key topic 2: Networking aspects

- New architectures (node architectures, network virtualization, SDN)
- Use novel photonic switching technologies
- Multi-x control, management and optimization
- Resilience

Key topic 3: Physical layer transmission aspects

- Adaptive format transmission employing flexible bandwidth channels and using software-defined optics to make optimum use of system spectral resources
- Data conversion and digital signal processing schemes for high throughput transmission at low energy consumption
- Digital signal processing for mitigation of optical components' limitations

Key topic 4: Reference scenarios, test infrastructure and system tests

•• Alcatel • Lucent

SASER – Structure of Celtic+ Project

SASER-SaveNet

Distributed node and network architectures

- Managed as a single node
- Central/distributed switch fabric
- Topologies: ring, star, mesh
- Novel distributed control architectures

Traffic encryption

 to ensure carrier-grade Quality-of-Service and reliability wrt. network failures and attacks (see Demo D6)

Network optimization

- Acts on deployed networks
- Novel incremental approach to enhance safety

Transport SDN demonstrator

 Architectural concepts that encompass the programmability of multiple network layers (see Demo D1)

SASER-SaveNet

Node architectures for optical packet switching

- POADM node architecture based upon wavelength demultiplexers, optical gates and wavelength multiplexer
- Benefits of optical packet switching for wireless backhauling with respect to network throughput and latency.
- A time-domain interleaved networking concept (TWIN) is studied as alternative concept for backhauling of converged fixed-wireless networks.

Physical layer transmission aspects

- high spectral efficiency and energy efficient transport
- Adaptive format transmission using software-defined optics is one of the key technologies to make optimum use of system spectral resources.
- Efficient data conversion and digital signal processing schemes enable flexible high throughput transmission at low energy consumption

SASER-SIEGFRIED: Project Objectives

Define a concept for a flexible and energy-efficient network architecture that fulfils current and future security requirements

SASER-SIEGFRIED: Project Work Package Structure and Partners

SASER-ADVAntage-NET

Routing and transmission in

flexible and secure metro and enterprise optical networks

- System manufacturer
- Software vendor
- Research institute
- Universities

ulm university universität

© 2012 ADVA Optical Networking. All rights reserved.

SASER-ADVAntage-NET

Optical layer flexibility as a basis for a safe and secure network

- Network aspects -
 - Optimum design and evolution of a flexible network architecture
- Physical layer flexibility -
 - Amplification of dynamic optical signals
 - Mixed modulation formats
 - Flexible bandwidths and data rates
- Physical layer security -
 - Coherent based quantum key distribution
 - Network coded transmission to avoid risk of wire-tapping

SASER-Q1 Horizontal. Optical Components

Finisar[®]

- Project objectives
 - The industrial and academic partners of this horizontal project providentext-generation optical components for the development of flexible and secure systems within SASER
 - Based on a strong collaboration and state-of-theart know-how of the partners, different material systems (InP, GaAs, polymer and silicon) are employed to produce novel laser, transmitter and receiver modules
 - Allowing the system partners to get their hands on these novel component in an early state of the development gives them a head start in their development and serves the European interests.
- FNSR coordinates the horizontal project "Optical components"
- FNSR is member of the national and European SASER coordination committee

UNIKASSEL VERSITÄT

New innovative ADC/DAC test chip and DK solutions

- WP1: Work on concepts and possible <u>target specification with all partners (done)</u>
- WP2/WP4: R&D on ADC/DAC test chip & DKs (done)
- WP3/WP5: Test, Evaluation and Debugging of ADC/DAC test chip & DK <u>Providing support to partners</u> for bring-up, test and optimization of DKs. ONGOING!

12

SASER-Q3 Horizontal. Test infrastructure and system tests.

S^QSER

- Project objectives
 - Deutsche Telekom T-Labs provides a testbed infrastructure
 - Develop reference scenarios with partners
 - Perform modular tests with partner's solutions
 - ✓ Disseminate results and support standardization
- Secure and dynamic NFV application ⇒ First testbed activities
 - Mid-Term Demo (Nokia, Uni Würzburg, BISDN, Fraunhofer, T-Labs)
 - Accepted for demo publication at SIGCOMM, Chicago, 08/2014
- Deutsche Telekom T-Labs is heading the working committee WC4
 - Reference scenarios, test infrastructure, and system tests
 - "Test Networks" and "Reference Networks" groups

13

