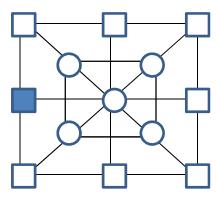

From packet to info-oriented networks

Dimitri Papadimitriou (Bell Labs) dimitri.papadimitriou@alcatel-lucent.com

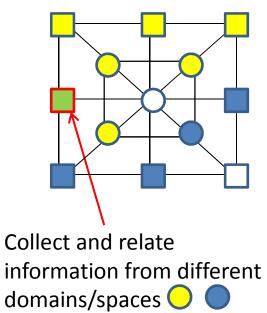
> CELTIC Proposers Day Antwerp, Belgium Oct. 28, 2015

Legacy models

	Sarnoff	Metcalfe (Ethernet) – Baran (Internet)
Spatial distribution of information	Centralized (in-net or periphery): u = cte	Distributed (periphery): u = u(x)
Pattern	Star, hub & spoke	Mesh
Scale (value)	n	n²
Example	CDN, DC, etc	Micro, Web, etc.

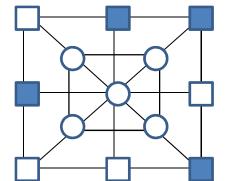


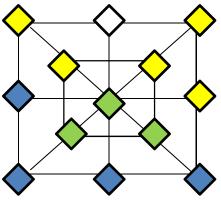
Models share commonality


- Specialization: network node O vs. terminal O
 Network nodes know how to reach "destinations" at localization/name resolution time (TCP/IP)

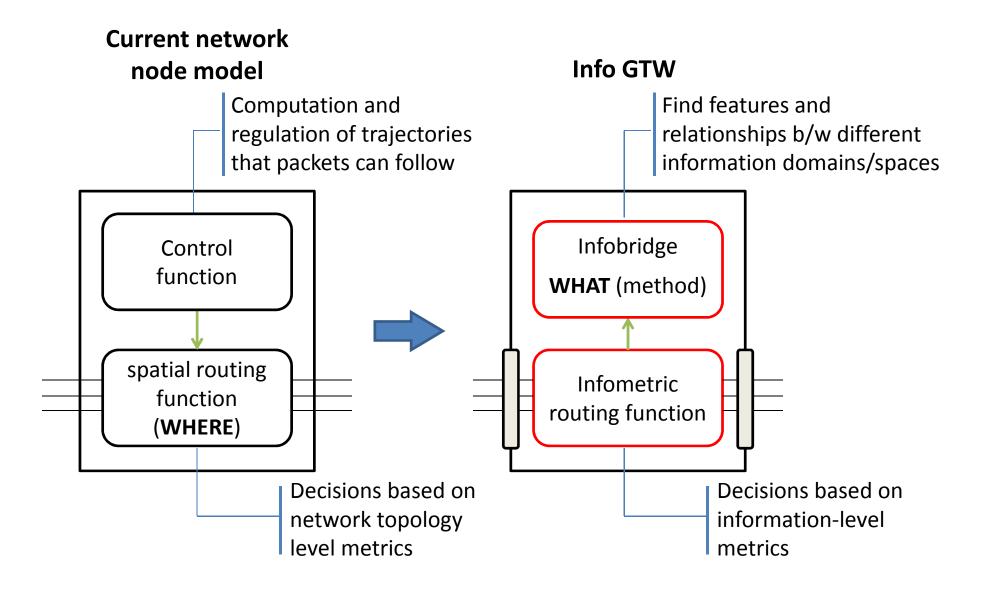
Mainstream approach

	Sarnoff	Metcalfe (Ethernet) – Baran (Internet)	Information/object communities
Spatial distribution of information u	Centralized: u = cte	Distributed: Classical TCP/IP	Centralized
Pattern	Star, hub & spoke, etc.	model inapplicable	Star, hub & spoke, etc.
Scale (value)	n	n ²	$\rightarrow 2^{n}$
Example	CDN, DC, etc	Micro, Web, etc.	

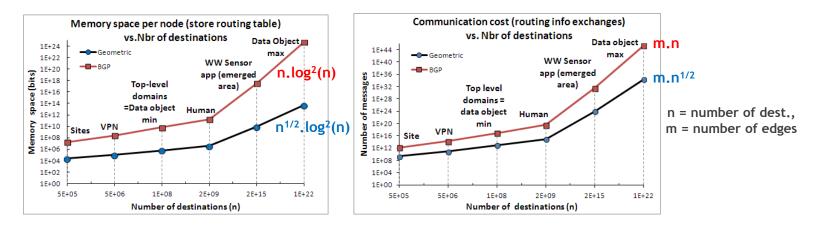




Our model


	Sarnoff	Metcalfe (Ethernet) – Baran (Internet)	Information/object communities
Spatial distribution of information	Centralized: u = cte	Distributed: u=u(x)	Dynamic: u = u(x,t)
Pattern	Star, hub & spoke	Mesh	Convective (diffusion- advection)
Scale (value)	n	n ²	2 ⁿ (BBS)
Example	CDN, Cloud, etc	Micro, web, mail,	

See next slide


From packet to info-oriented networks

Project objectives

- Explore first order principles and network models to "design" info GTW
- Main challenges
 - 1. Universality and genericity \rightarrow target replacement or "overlay"
 - 2. Remove dependence on dest. locator-based only exchange
 - \Rightarrow Rethink localization function (e.g. information grouping)
 - 3. Dynamics in spatial distribution of information without specialization (host vs. network nodes)

 \rightarrow Principle of performing routing decisions before "localization" becomes inefficient if ever achievable (#routes ~ #data objects)

 \Rightarrow Polylog header size and Dynamic learning of information-level metrics

Project structure and expertise

Step 1:

- Skills: TCS, comp./alg. learning theory, comp. intelligence (EA)
- Task: procedures, algorithms and proofs
- Outcome: theoretic validation

Step 2:

- **Skills**: stat. inference, data-driven/unsupervised ML, optimization (combinatorial, continuous, robust)
- Task: programs and numeric evaluation
- Outcome: alg. design choices and performance evaluation

Step 3:

- Skills: software development (HL), experimental evaluation
- **Task**: develop abstract protocol model/components
- Outcome: demonstrator

2-3 partners

2-3 partners

1+1 partner