

CELTIC Proposers Day

in Vienna on 30.01.26

- Business Impact Session -

CISSAN

Collective intelligence supported by security aware nodes (CISSAN)

Klaus Chmelina, GeoData

www.celticnext.eu

Collective intelligence supported by security aware nodes (CISSAN)

A collectively intelligent security platform consisting of a set of innovative algorithms, technologies, and solutions

Key Facts

Project status: Running
Coordinator: Ilgin Safak, University of Jyväskylä (JYU), Finland
No. of partners: 18
Partner countries: Austria, Finland, Spain, and Sweden
Start date: May 1st, 2023
End date: May 31st, 2026
Supported by: Austrian Research Promotion Agency (FFG), Business Finland, Centre for the Development of Industrial Technology (CDTI), Swedish Agency for Innovation Systems (Vinnova)
Total project budget : ~ EUR 8.5M
Total effort : ~ 74.6 PY

<https://www.celticnext.eu/project-cissan>
<https://www.jyu.fi/en/projects/cissan>

Consortium

Summary

Countries: 4
Organizations: 18
Universities: 2
Research inst.: 1
Industry: 6
SMEs: 9

* 1 research inst.
in Austria is
subcontracted

Partners

Austria

- GeoData

Finland

- Bittium Biosignals
- Bittium Wireless
- University of Jyväskylä (coordinator)
- Mattersoft
- Mint Security
- Netox
- Nodeon
- Scopesensor
- Wirepas

Spain

- Councilbox

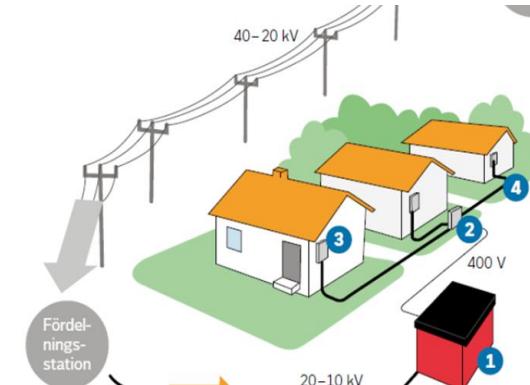
Sweden

- Äffarsverken
- Arctos Labs
- Blekinge Tekniska Högskolan
- Blue Science Park
- Clavister
- Savantic
- Techinova

Timeline

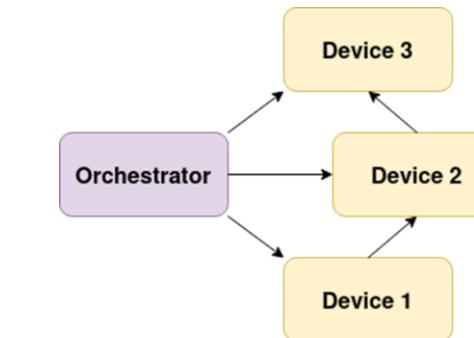
Work packages and tasks		GANTT Timing and milestones											
		Year 1				Year 2				Year 3			
		M1-3	M4-6	M7-9	M10-12	M13-15	M16-18	M19-21	M22-24	M25-27	M28-30	M31-33	M34-36
WP0	Management of the project												
T0.1	Coordination												
T0.2	Organisation (Project kick-off, Mid-term and Final reviews)	M0.1						M0.3					M0.6
T0.3	Dissemination												
T0.4	Exploitation (Workshops)					M0.2				M0.4			M0.5
WP1	Continuous follow-up of the related research fields												
T1.1	Follow-up of the related research fields												
T1.2	Detection and analysis of weak signals					D1.1							D1.2
WP2	Definition of the system architecture												
T2.1	Definition of the architecture, system elements, interfaces			D2.1									D2.3
T2.2	Risk, threat and impact analysis				D2.2								
WP3	Business models					D3.1							
T3.1	Recognition and definition of the earning models						D3.1						
T3.2	Business impact analysis of the new earning models							D3.2					
T3.3	Modification and update mechanisms to earning models												D3.3
WP4	Data security, gathering and quality assessment												
T4.1	Data quality verification				D4.1						D4.5		
T4.2	Data gathering for distributed algorithms and load balancing				D4.1				D4.3				
T4.3	Distributed network logging systems					D4.2			D4.4				
WP5	Distributed intelligent security mechanisms												
T5.1	Distributed intelligent security incident detection					D5.1			D5.2				
T5.2	Collective intelligence algorithms												D5.4
T5.3	Tools to optimally distribute security functions												D5.5
T5.4	Blockchain-based IoT network security												D5.3
WP6	Proof of work												
T6.1	CISSAN platform and solutions of the project use cases												D6.1, D6.3
T6.2	Interfaces to 3rd parties' applications												D6.2
WP7	Standardization												
T7.1	Standardization follow-up and action planning							D7.1					
T7.2	Standardization-related coordination in other WPs								D7.2				

Project Idea


- **Goal (why)**
Detecting and countering security and operational threats in IoT networks.
- **Content (how)**
by *Collective Intelligence*
Devel. of techniques enabling distributed & intelligent
 - *security & operational monitoring*
 - *attack & event detection and*
 - *response*in IoT networks.
- **Outcome:**
A security platform (**CISSAN platform**) consisting of a set of innovative techniques (algorithms, methods, devices) that collaborate in an orchestrated way to protect IoT networks.

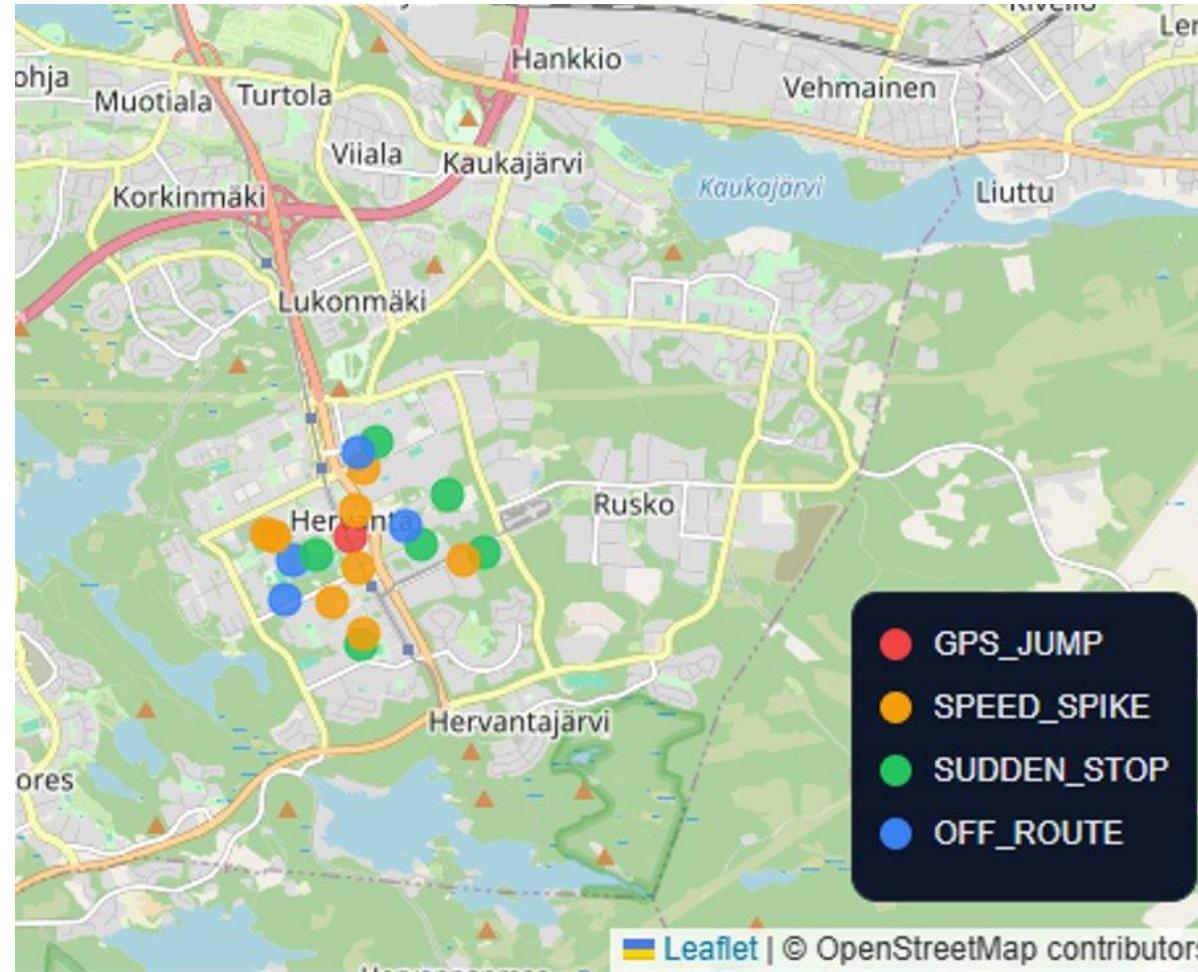
Use Cases

Public Transport (Mattersoft and Nodeon)


Energy - Smart Grid (Affärsvärken)

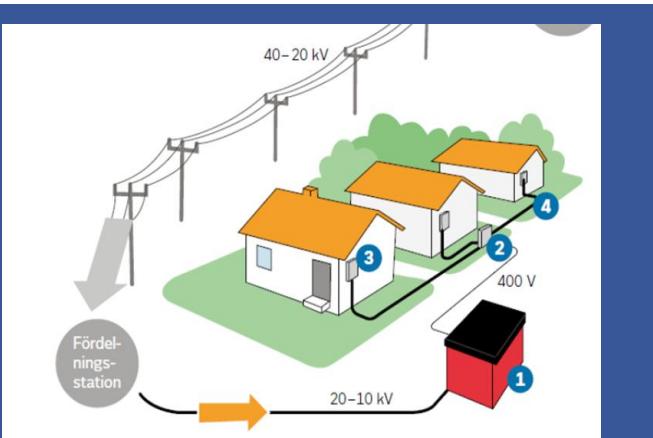
Tunnelling (GeoData)

Manufacturing (Bittium)



Automated Disaster Recovery (Arctos Labs/JYU)

Use Case Public Transport


Protecting vehicles from GPS/GNSS signal spoofing by

**Detection of
position anomalies
by domain-specific
algorithms**

**Alarming the
control center**

**Initiating defensive
actions
(vehicle isolation,...)**

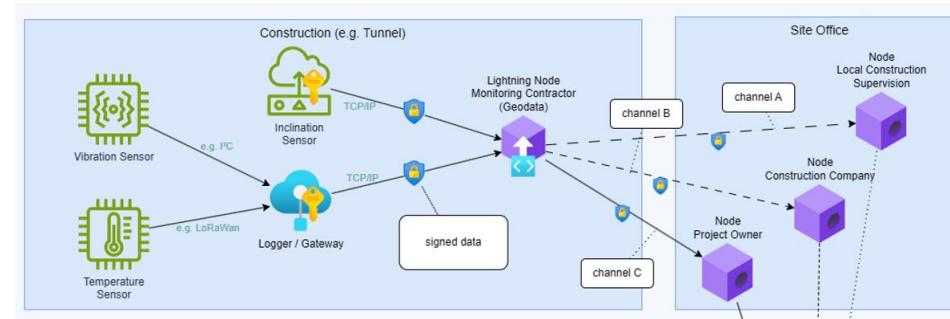
Use Case Energy - Smart Grid

Protecting Energy Grids from attacks on local control stations (RTUs) by

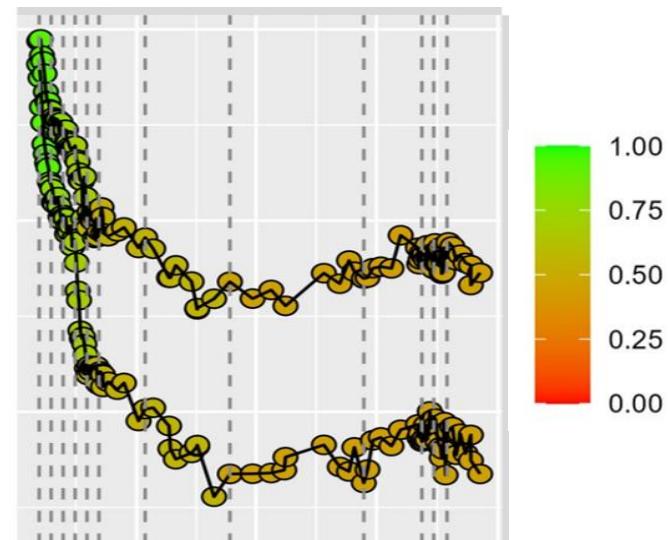
Detection of operational anomalies in RTUs using ML algorithms

Propagation of attack information to other RTUs

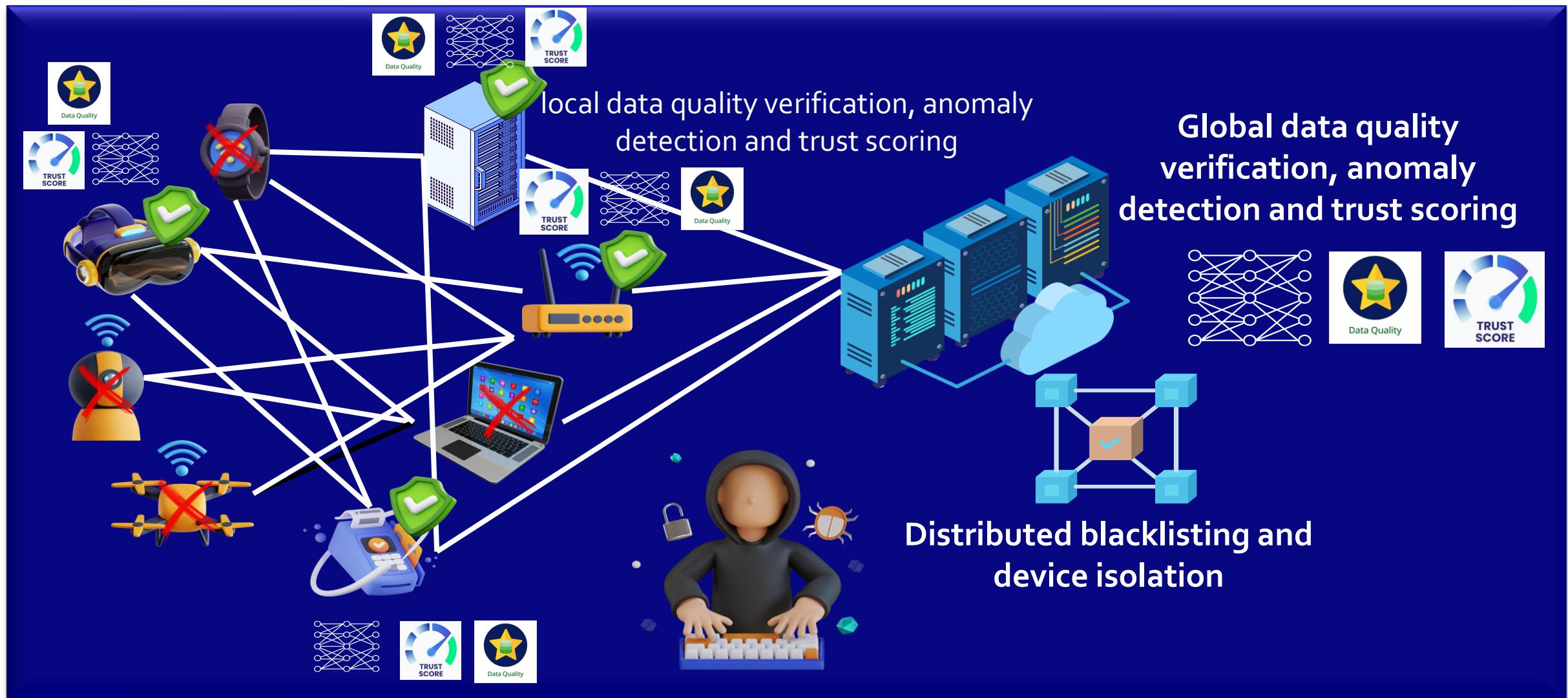
Initiating defensive actions in the network (blocking of IP,...)



Use Case Tunnelling


Protecting tunnelling processes from data tampering attacks by

Signing sensor data at creation with **Security Chips**


Transferring sensor data
applying **Multi-party
channel routing**
(Blockchain)

Anomaly detection by
assessing **Data Believability**
using **empirical rules** and **AI**

Initiating **defensive actions** (data isolation,...)

Collective intelligence mechanisms

Business Impact

Operational resilience
and business
continuity

Cost efficiency and
improved return on
security investments

Better risk
management and
faster decision-making

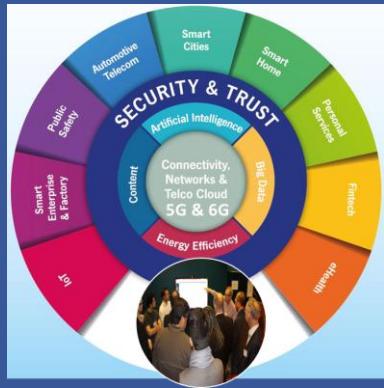
Business enablement
and interoperability

Strategic autonomy
and ecosystem
collaboration

New products and
Services: **15**

Dissemination

14 academic publications


4 patent applications filed

16 invited talks / poster presentations

5 websites

[CelticNextEurekaCluster](#)

[@CelticNext](#)

[CELTIC-NEXT Video Channel](#)

MANY THANKS FOR YOUR ATTENTION.

CELTIC-NEXT

Klaus Chmelina, GeoData
klaus.chmelina@geodata.com