Building the Golden Closed Loop – AI and Networking

Diego R. López
Telefónica
Addressing the Complexity Challenge

• Networks becoming increasingly complex
 o 5G foresees a x10 densification of sites compared to 4G
 o Best user experience demands heterogeneity in access technologies
 o The continuous challenge of centralized proposals, way beyond the usual OTT
 o And not suitable to be managed using traditional operation

• Adapt results from the IT experience in virtualization
 o Acknowledging the differences
 ▪ Topology awareness
 ▪ The conservation principle
 ▪ Openness
 ▪ Integrity and auditability
 ▪ Isolation
 o Exploring new paths

• Towards zero-touch service management
The Essential Automation Closed Loop

- Not such a radical change
 - Automatics have been around for a long time
 - AI as a tool to derive further insights from data and improve policies
 - Extended capabilities, but do not expect Skynet

- The key issues are not in the engine(s)
 - But in the data and action flows
 - Including distribution and placement of the engine(s)
- And in flow management and application

Network Environment
- SDN Controller
- NFV Orchestrator
- EMM
- MEC
- Router
- ...

Legacy solution

Data Acquisition

Policy Engine

Data

Actions

New Data

New Policies

AI Engine

Actions Scores

AI Enhancement

Data

Legacy solution

Network Environment

Data Acquisition

Policy Engine

New Data

New Policies

AI Engine

Actions Scores

AI Enhancement
The Data Stream

• No matter how intelligent: Crap in means crap out
 o Usable: Adaptation (formats, scales…)
 o Sufficient: Topology (sources, aggregators…)
 o Safe: Provenance (origin, timestamps…)
 o Steady: Continuity (pace, availability…)

• Not just data
 o Metadata becomes essential, including semantic mappings
 o What seems to claim for a data stream ontology
 o Not that far away: data modeling is a first step

• An enhanced data fabric seems the logical approach
 o Supporting resource, orchestration and function sources
 o Combining current network monitoring tools and recent telemetry developments

- KAFKA BUS
 - Public Clouds
 - Alarms
 - KPIs
 - Network Service events
The Action Stream

- OAM actions at a wide variety of different domains
 - Challenging, given the current state-of-the-art
- Initial strategies
 - Domain specific
 - Recommendation systems
 - Autonomic protocols
- Capability models
 - Reusable functionality description
 - Abstractions of network element functionalities usable as building blocks
 - Combined to provide more powerful features
 - Registration mechanisms to support CI/CD
 - Inter-domain collaboration for E2E management
The Process in the Loop

• The dialectic way
 o Thesis: Translate intent into action
 ▪ Understanding intent statements
 ▪ Mapping onto technologies
 o Antithesis: Support environment constraints
 ▪ Policies provided by network management
 ▪ The archetypal SLA enforcement
 o Synthesis: Conflict resolution
 ▪ Among action requests
 ▪ And with management constraints

• Audit track and intelligibility
 o The who, the what, the when
 o And the why

• And security
 o Deal with adversarial AIs
 o And consider circuit breakers
The Architectural Mapping

- Networks are critical and naturally distributed systems
 - A distributed AI for managing them
- The nature of distribution
 - Aggregation of knowledge
 - Accumulation of decisions
 - Cooperative vs independent vs selfish
 - Fixed vs mobile vs roaming
- Topologies
 - The mapping on the network topology
 - Depth and breadth
 - Nervous system approaches
- Protocols
 - Specific knowledge and policy exchanges
 - Reuse stream mechanisms
 - Apply good-ole BGP and others of its kin
Trustworthy Datasets

• A serious lack of usable datasets
 o For training or validation
 o Data as an asset
 o Privacy concerns
 o None or limited tagging

• Generation of synthetic datasets
 o Traffic samples generated in a controlled way
 o Configurable mixes of synthetic and real traffic

• And metadata management
 o Different scenarios, from high loads to security threats
 o Training and validation loops

• Relying on Software Network principles
 o Repeatability and reproducibility
 o Controlled variations
A Global Framework for Automation

- Consider zero-touch in new technologies to be deployed: 5G-NR, slicing, edge...
- Integrate existing data and action infrastructures to support streams
- Incorporate processes to support conciliation, auditability, adaptation and security

- A use-case-driven strategy
 - Automated service and network capacity delivery
 - New service modelling and creation
 - Assisted network assurance
 - AI-based issue and fault management
 - Network optimization
A Matter of Balance

- Network heterogeneous and distributed nature and a holistic view of services and infrastructure
 - Topologies, protocols and models for distributed AI elements
- User requirements and operational policies
 - Intent dialectics and elastic policy enforcement
 - Compositional mechanisms to combine requests in multi-tenant environments
- Regulatory matters and security
 - Data sovereignty and identity management for all entities
 - Non-repudiation and accountability
- Closed loop operation and infrastructure criticality
 - Keep humans in the loop, retaining ultimate understanding and control
 - AI intelligibility and security mechanisms to guarantee proper operation
- Sensing and acting
 - Open and extensible mechanisms for data and action streams
 - Converged data models for definition and monitoring
 - Converged control action representations
WE ONLY PAY YOU BECAUSE MONKEYS ARE HARD TO TRAIN AND ROBOTS ARE EXPENSIVE.